The structure of $\mathbf{T e}(\mathbf{O H})_{\mathbf{6}} \cdot \mathbf{N a}_{\mathbf{3}} \mathbf{P}_{\mathbf{3}} \mathrm{O}_{\mathbf{9}} \cdot \mathrm{K}_{\mathbf{3}} \mathbf{P}_{\mathbf{3}} \mathrm{O}_{\mathbf{9}}$. By Richard E. Marsh, Arthur Amos Noyes Laboratory of Chemical Physics,* California Institute of Technology, Pasadena, CA 91125, USA

(Received 30 October 1987; accepted 16 December 1987)

Abstract

The structure of this compound, originally described in space group C2/c [Averbuch-Pouchot \& Durif (1987). Acta Cryst. C43, 1653-1655] is properly described as rhombohedral, space group $R \overline{3} c$, with $a=12.355$ (4) $\AA, \alpha=51.01$ (2) ${ }^{\circ}$, $Z=2$. (Hexagonal cell: $a=10 \cdot 640$ (4), $c=32 \cdot 16$ (2) \AA, $Z=6$.) Revised coordinates are given.

The structure of this compound was originally described as monoclinic, space group $C 2 / c$, with $a=18.42$ (1), $b=$ 10.644 (5), $c=12.348$ (8) $\AA, \beta=119.76$ (5) ${ }^{\circ}, Z=4$. The vectors $\left[\frac{1}{2},-\frac{1}{2}, 1\right],\left[\frac{1}{2}, \frac{1}{2}, 1\right]$ and $[0,0,1]$ lead to an effectively rhombohedral cell with $a_{r}=b_{r}=12.358, c_{r}=12.348 \AA$, $\alpha_{r}=\beta_{r}=51 \cdot 00, \gamma_{r}=51.02^{\circ}$; the vectors $[0,-1,0]$, $\left[\frac{1}{2}, \frac{1}{2}, 0\right]$ and $[1,0,3]$ lead to the corresponding hexagonal cell with $a_{h}=10.644, \quad b_{h}=10.637, c_{h}=32.158 \AA, \alpha_{h}=89.95, \beta_{h}$ $=90.00, \gamma_{h}=120.02^{\circ}$. The transformations $x_{h}=x-y-z / 3$, $y_{h}=2 x-2 z / 3+0.5, z_{h}=z / 3$, when applied to the values in Table 1 of Averbuch-Pouchot \& Durif (1987) and appropriately averaged, lead to the hexagonal coordinates in Table 1. No value in the earlier table needs to be changed by more than 1.0 e.s.d. to achieve the symmetry of $R \overline{3} c$.

* Contribution No. 7693. Work supported in part by the National Institutes of Health (grant GMS 16966).

Table 1. Coordinates, space group $R \overline{3} c$; hexagonal setting

	x	y	z	
Te	$6(b)$	0	0	0
K	$18(e)$	0	$0.39420(4)$	0.25
P	$36(f)$	$0.00629(4)$	$0.15923(4)$	$0.15905(1)$
Na	$18(e)$	$0.19898(7)$	0.19898	0.25
O	$36(f)$	$0.1667(1)$	$0.0683(1)$	$0.03492(4)$
$\mathrm{O}(L)$	$36(f)$	$0.1374(1)$	$0.1315(1)$	$0.14581(4)$
$\mathrm{O}(E 1)$	$36(f)$	$0.0138(1)$	$0.2712(1)$	$0.13027(4)$
$\mathrm{O}(E 2)$	$36(f)$	$0.0066(1)$	$0.1776(1)$	$0.20471(4)$
H	$36(f)$	$0.202(2)$	$0.028(2)$	$0.0306(6)$

The 'e.s.d.'s', given in parentheses, both for these coordinates and for the cell dimensions given in the Abstract, are estimated from the values reported by Averbuch-Pouchot \& Durif (1987). Since covariances among the original parameters are not available, uncertainties of the transformed parameters can only be estimated.

There are no significant changes in the interatomic distances reported earlier. However, the change in space group points up the symmetry properties of the compound: the TeO_{6} octahedron has crystallographic symmetry $\overline{3}$; the K atoms (as well as the Na atoms) are all equivalent and lie on twofold axes; and the $\mathrm{P}_{3} \mathrm{O}_{9}$ ring, rather than having 'no internal symmetry', lies on a threefold axis.

Reference

Averbuch-Pouchot, M. T. \& Durif, A. (1987). Acta Cryst. C43, 1653-1655.

Acta Cryst. (1988). C44, 774-775
$\mathbf{Z r}_{2} \mathbf{A l}_{3} \mathbf{C}_{5-x}$ and $\mathrm{Hf}_{2} \mathrm{Al}_{3} \mathbf{C}_{5-x}$ described with higher symmetrical space group $\boldsymbol{P}_{\mathbf{3}} / \boldsymbol{m m c}$. By E. Parthé and B. Сhabot, Laboratoire de Cristallographie aux Rayons X, Université de Genève, 24, Quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
(Received 23 November 1987; accepted 4 January 1988)

Abstract

An analysis of the symmetry elements contained in the structure of $\mathrm{Zr}_{2} \mathrm{Al}_{3} \mathrm{C}_{5-x}$ and isotypic $\mathrm{Hf}_{2} \mathrm{Al}_{3} \mathrm{C}_{5-x}$ shows that it can be described with space group $P 6_{3} / m m c$ instead of $P 31 c$ originally proposed by Schuster \& Nowotny [Z. Metallkd. (1980), 71, 341-346]. Based on the carbon occupation restriction rule for neighbouring octahedral interstitial sites in close-packed structures the composition for maximum carbon content should be $\mathrm{Zr}_{2} \mathrm{Al}_{3} \mathrm{C}_{4}$.

0108-2701/88/040774-02\$03.00

Discussion

The crystal structure of $\mathrm{Zr}_{2} \mathrm{Al}_{3} \mathrm{C}_{5-x}$ and isotypic $\mathrm{Hf}_{2} \mathrm{Al}_{3} \mathrm{C}_{5-x}$ has been determined by Schuster \& Nowotny (1980) and described with a hexagonal unit cell ($a=3.3445, c=$ $22.23 \AA$ and $a=3.319, c=22.09 \AA$, respectively) and space group P31c. A misprint in the publication for the y coordinate of one C atom has been noted by the editor of Structure Reports (1982). However, a new error slipped into the Structure Reports data for the z parameter of Al in 2(b)
© 1988 International Union of Crystallography

Table 1. Corrected structure data of $\mathrm{Zr}_{2} \mathrm{Al}_{3} \mathrm{C}_{5-x}$ described with incorrect space group P31c (No. 159)

	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	
$\mathrm{Zr}(1)$	in 2 (b)	$\frac{1}{3}$	$\frac{2}{3}$	0.1912
(2)	in 2 (b)	$\frac{1}{3}$	$\frac{2}{3}$	0.8088
$\mathrm{Al}(1)$	in 2 (a)	0	0	0.0900
(2)	in 2 (a)	0	0	0.4100
(3)	in 2 (b)	$\frac{1}{3}$	$\frac{2}{3}$	0.5
$\mathrm{C}(1)$	in 2 (a)	0	0	0.25
(2)	in 2 (b)	$\frac{1}{3}$	$\frac{2}{3}$	0.0450
(3)	in 2 (b)	$\frac{1}{3}$	$\frac{2}{3}$	0.6339
(4)	in 2 (b)	$\frac{1}{3}$	$\frac{2}{3}$	0.3661
(5)	in 2 (b)	$\frac{1}{3}$	$\frac{2}{3}$	0.9550

Table 2. Standardized data of $\mathrm{Zr}_{2} \mathrm{Al}_{3} \mathrm{C}_{5-x}$ in the correct space group $\mathrm{P6}_{3} / \mathrm{mmc}$ (No. 194)

Site $\mathrm{C}(2)$ is probably only half occupied. Composition is then $\mathrm{Zr}_{2} \mathrm{Al}_{3} \mathrm{C}_{4}$.

		x	y	z
$\mathrm{C}(1)$	in 4 (f)	$\frac{1}{3}$	$\frac{2}{3}$	$0 \cdot 1161$
Zr	in 4 (f)	$\frac{1}{3}$	$\frac{2}{3}$	0.5588
$\mathrm{C}(2)$	in 4 (f)	$\frac{1}{3}$	$\frac{2}{3}$	0.7050
$\mathrm{Al}(1)$	in 4 (e)	0	0	$0 \cdot 1600$
$\mathrm{Al}(2)$	in 2 (c)	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{1}{4}$
$\mathrm{C}(3)$	in 2 (a)	0	0	0

which should be $\frac{1}{2}$ instead of 0 . The corrected data for $\mathrm{Zr}_{2} \mathrm{Al}_{3} \mathrm{C}_{5-x}$ described with space group P31c are given in Table 1.

The standardization of the data listed in Table 1 with the STRUCTURE TIDY program (Gelato \& Parthé, 1987) leads to two identical solutions for settings $-x,-y,-z$ and $-x,-y,+z$, which is an indication that the polar space group used is a subgroup of the correct one. A brief inspection of the z coordinates of the atoms indicates that there are pairs of numerical values which add up to $\frac{1}{2}$ or 1 . Searching the structure for overlooked symmetry elements we find that the
atom arrangement can be described with space group $P 6_{3} / m m c$. A representation of the structure in this space group (Table 2) needs an origin shift of $00 \frac{1}{4}$ of the original data and the grouping of the original atom coordinates as follows: $\mathrm{Zr}(1)$ and $\mathrm{Zr}(2) \rightarrow \mathrm{Zr}, \mathrm{Al}(1)$ and $\mathrm{Al}(2) \rightarrow \mathrm{Al}(1)$, $\mathrm{Al}(3) \rightarrow \mathrm{Al}(2), \mathrm{C}(3)$ and $\mathrm{C}(4) \rightarrow \mathrm{C}(1), \mathrm{C}(2)$ and $\mathrm{C}(5) \rightarrow \mathrm{C}(2)$ and $C(1) \rightarrow C(3)$. No error limits for the adjustable atom coordinates were given in the original paper. Since corresponding numerical values for the two structure descriptions agree with each other up to the last decimal place we feel that the true space group of $\mathrm{Zr}_{2} \mathrm{Al}_{3} \mathrm{C}_{5-x}$ is $P 6_{3} / \mathrm{mmc}$.

While this study was in progress the MISSYM program by Le Page (1987) to find overlooked symmetry elements became available to us. The computer results indicate in addition to the symmetry elements contained in P31c the following new ones: $6_{3},-1$ and three extra mirror planes perpendicular to the basal plane. This corresponds in the final analysis to space group $\mathrm{Pb}_{3} / \mathrm{mmc}$.

It was stated by Schuster \& Nowotny (1980) that carbon voids are to be expected because of carbon-carbon repulsion. According to the restriction rule for the occupation of neighbouring octahedral interstices (Parthé \& Yvon, 1970) it can be assumed that the $C(2)$ position in $4(f)$ is only half occupied by C atoms. The composition for maximum C content is then $\mathrm{Zr}_{2} \mathrm{Al}_{3} \mathrm{C}_{4}$.

This study was supported by the Swiss National Science Foundation under contract 2.035-0.86.

References

Gelato, L. M. \& Parthé, E. (1987). J. Appl. Cryst. 20, 139-143. Le Page, Y. (1987). J. Appl. Cryst. 20, 264-269. Parthé, E. \& Yvon, K. (1970). Acta Cryst. B26, 153-163.
Schuster, J. C. \& Nowotny, H. (1980). Z. Metallkd. 71, 341-346.
Structure Reports (1982). Vol. 46A, p. 4. Dordrecht: Reidel.

Acta Cryst. (1988). C44, 775-776

The equivalent isotropic displacement factor. By Reinhard X. Fischer and Ekrehart Tillmanns, Mineralogisches Institut der Universität, Am Hubland, D-8700 Würzburg, Federal Republic of Germany
(Received 1 June 1987; accepted 24 December 1987)

Abstract

A check of recent articles in Acta Crystallographica Section C shows that some confusion exists about the definition of the equivalent isotropic displacement factor $U_{\text {eq }}$. A common error is the use of the non-orthogonalized tensor U for the calculation of $U_{\text {eq }}$ in non-orthogonal crystal systems. In addition, a number of cases have been found where $a_{i}{ }^{*}$ is confused with a_{i} or B with β, or where the wrong factors are used to relate $U_{i j}$ or $\beta_{i j}$ to $B_{i j}$ or vice versa. $U_{\text {eq }}$'s for the different crystal systems are derived from the general expression $U_{\mathrm{eq}}=\frac{1}{3} \sum_{l} \Sigma_{j} U_{i j} a_{l}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.

Introduction

Since anisotropic displacement factors* are to be deposited the equivalent isotropic displacement factors are published together with the atomic coordinates. Browsing through the structure papers in Acta Crystallographica one can find some fifty different definitions for $U_{\text {eq }}$ or $B_{\text {eq }}$, many of which are definitely wrong. Consequently, the Commission on Journals (1986) recommended use of the definitions given by

[^0]© 1988 International Union of Crystallography

[^0]: * We follow here the recommendation by Brock (1984) and use the expression 'displacement factor' instead of 'temperature factor'.

